Tech Sheet

Measuring a Small Arc

Steps to measure a circle with less than $\mathbf{9 0}$ degree's of arc:

1. Measure the small arc as a Measured Circle (a measured circle is used in this example although Auto Circle will also work).

- Measure the circle on-line or
- Pick it from the Model or
- Key in the values

2. In this example, the back arc on the Hexagon Demo Block will be used.

3. Edit (F9) the circle.

- Add additional hits.
- Change the "Best Fit Math Type" to "FIXED RAD".
- Key in the Nominal Diameter.
- Check ∇ Regenerate Hit Targets
- Press OK.
- When prompted "Ok to equally space hits?" answer YES.

Measured Circle	
Feature name:	Number of hits:
CIR1	
Reference type:	Workplane:
WORKPLANE -	ZPLUS $\quad-$
Best Fit math type:	$\left[\begin{array}{l}\text { Coordinate system } \\ \text { - Rect } \\ C \text { Polar }\end{array}\right.$
FIXED_RAD -	
∇ Regenerate hit targets	Circular feature type
Г Copy to actuals	\bigcirc In Cout
-Feature theoreticals	
X NOM: 3.8786	I NOM: 0
Y NOM: -5.7328	J NOM: 0
Z NOM: -0.2500	KNOM: 1
Diameter: 19.9409	Start angle: 100
	End angle: 60
Hit Targets...	OK Cancel

4. Execute the feature CtrI to update the measured data.
5. Dimension the location 나 of the Fixed Radius circle. This will verify the location of the radius.
6. Enter the location Nominals and Tolerances.

曲	IN	LOC4	CIR1				
AX	MEAS	NOMINAL	+TOL	-TOL	DEV	OUTTOL	
X	3.8797	3.8786	0.0100	0.0020	0.0011	0.0000	\square
Y	-5.7321	-5.7328	0.0100	0.0020	0.0007	0.0000	\square

7. Create an Alignment and set origin on Fixed Radius circle.

8. Open the Parameter Settings Dialog F10. Select the Probing Tab and enable polar compensation for the active workplane.
\triangle Note: Skip this step when using CAD and use Vector points rather than Measured points.

9. With the joystick, measure 3 or more individual Measured Points on the Radius.

Note: If you are using CAD, use Vector Points and pick from model.

10. Dimension the individual points using Location dimension 딘 and select the "V Prad" check box (Polar Radius). This will verify the size of the radius.

11. Enter Nominals and Tolerances for the Polar Radius'.

中	IN	LOC1 - PNT1						
AX	MEAS	NOMINAL	+TOL	-TOL	DEV	OUTTOL		
PR	9.9720	9.9705	0.0100	0.0100	0.0015	0.0000		
\#	IN	LOC2 - PNT2						
AX	MEAS	NOMINAL	+TOL	-TOL	DEV	OUTTOL		
PR	9.9716	9.9705	0.0100	0.0100	0.0011	0.0000		
廿	IN	LOC3 - PNT3						
AX	MEAS	NOMINAL	$+\mathrm{TOL}$	-TOL	DEV	OUTTOL		
PR	9.9701	9.9705	0.0100	0.0100	-0.0004	0.0000		

12. Open the Parameter Settings Dialog F10 and turn off polar compensation.
